Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 328]
|
|
Сложность: 3 Классы: 10,11
|
Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525: fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl).
а) Докажите равенства: fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x).
б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками
какие-то 1000 клеток прямоугольника
1
x 1994
. Если соседняя справа от карточки с числом
n
клетка свободна, то за один ход ее разрешается накрыть карточкой с числом
n+1
. Докажите, что
нельзя сделать более полумиллиона таких ходов.
|
|
Сложность: 4- Классы: 8,9,10
|
Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим.
Какое наименьшее число может оказаться на месте единицы?
|
|
Сложность: 4- Классы: 10,11
|
По кругу расставлено 300 положительных чисел. Могло ли случиться так, что каждое из этих чисел, кроме одного, равно разности своих соседей?
В однокруговом турнире участвовали 15 команд.
а) Докажите, что хотя бы в одной игре встретились команды, которые
перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.
б) Могла ли такая игра быть единственной?
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 328]