Страница:
<< 3 4 5 6 7 8 9 >> [Всего задач: 71]
|
|
Сложность: 3 Классы: 7,8,9
|
Окружность покрыта несколькими дугами. Эти дуги могут налегать
друг на друга, но ни одна из них не покрывает окружность целиком.
Доказать, что всегда можно выбрать несколько из этих дуг так,
чтобы они тоже покрывали всю окружность и составляли в сумме не
более
720o .
На плоскости имеется 1983 точки и окружность единичного радиуса.
Доказать, что на окружности найдётся точка, сумма расстояний от которой до данных точек не меньше 1983.
Выпуклый $n$-угольник ($n$ > 4) обладает таким свойством: если диагональ отсекает от него треугольник, то этот треугольник равнобедренный. Докажите, что среди любых четырёх сторон этого n-угольника есть хотя бы две равных.
|
|
Сложность: 3+ Классы: 8,9,10
|
Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью
освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа
освещает круг радиуса, равного высоте, на которой она висит?
На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?
Страница:
<< 3 4 5 6 7 8 9 >> [Всего задач: 71]