ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 74]      



Задача 58269

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

Дан выпуклый пятиугольник, все углы которого тупые. Докажите, что в нем найдутся две такие диагонали, что круги, построенные на них как на диаметрах, полностью покроют весь пятиугольник.
Прислать комментарий     Решение


Задача 58271

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

Прожектор освещает угол величиной 90o. Докажите, что в любых четырех заданных точках можно разместить 4 прожектора так, что они осветят всю плоскость.
Прислать комментарий     Решение


Задача 58272

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

Длина проекции фигуры $ \Phi$ на любую прямую не превосходит 1. Верно ли, что $ \Phi$ можно накрыть кругом диаметра: а) 1; б) 1,5?
Прислать комментарий     Решение


Задача 79457

Темы:   [ Покрытия ]
[ Неравенства с площадями ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 5
Классы: 9,10,11

Некоторый треугольник можно вырезать из бумажной полоски единичной ширины, а из любой полоски меньшей ширины его вырезать нельзя. Какую площадь может иметь этот треугольник?
Прислать комментарий     Решение


Задача 116701

Темы:   [ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
[ Ряды с неотрицательными членами ]
Сложность: 5
Классы: 11

Про бесконечный набор прямоугольников известно, что в нём для любого числа S найдутся прямоугольники суммарной площади больше S.
  а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?
  б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .