ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1275]      



Задача 53097

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

На продолжении за точку A стороны AC правильного треугольника ABC взята точка M, и около треугольников ABM и MBC описаны окружности. Точка A делит дугу MAB в отношении MA : AB = n. В каком отношении точка C делит дугу MCB?

Прислать комментарий     Решение


Задача 53098

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

На стороне AC правильного треугольника ABC взята точка M, и около треугольников ABM и MBC описаны окружности. Точка C делит дугу MCB в отношении $ \cup$ MC : $ \cup$ CB = n. В каком отношении точка A делит дугу MAB?

Прислать комментарий     Решение


Задача 53723

Темы:   [ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Рассмотрим четыре сегмента, отсекаемых от окружности вписанным в неё четырёхугольником и расположенных вне этого четырёхугольника. Найдите сумму углов, вписанных в эти сегменты.

Прислать комментарий     Решение


Задача 54328

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

В окружности проведены хорды AB и BC, причём AB = $ \sqrt{3}$, BC = 3$ \sqrt{3}$, $ \angle$ABC = 60o. Найдите длину той хорды окружности, которая делит угол ABC пополам.

Прислать комментарий     Решение


Задача 54920

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

В окружности радиуса R проведены хорда AB и диаметр AC. Хорда PQ, перпендикулярная диаметру AC, пересекает хорду AB в точке M. Известно, что AB = a, PM : MQ = 3. Найдите AM.

Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .