Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 501]      



Задача 65228

Темы:   [ Правильный (равносторонний) треугольник ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что  AF < BD.

Прислать комментарий     Решение

Задача 65703

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства касательной ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11

Автор: Обухов Б.

Внутри равнобокой трапеции ABCD с основаниями BC и AD расположена окружность ω с центром I, касающаяся отрезков AB, CD и DA. Описанная окружность треугольника BIC вторично пересекает сторону AB в точке E. Докажите, что прямая CE касается окружности ω.
Прислать комментарий     Решение


Задача 66156

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10,11

Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

Прислать комментарий     Решение

Задача 66253

Темы:   [ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

Описанная окружность треугольника ABC пересекает стороны AD и CD параллелограмма ABCD в точках K и L. Пусть M – середина дуги KL, не содержащей точку B. Докажите, что  DMAC.

Прислать комментарий     Решение

Задача 66261

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки подобия ]
[ Перенос помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 9,10

Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что  AH = AXA  и  H ≠ XA.  Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.

Прислать комментарий     Решение

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .