Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 501]      



Задача 108626

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вспомогательная окружность ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Точка H – ортоцентр треугольника ABC , а точки H1 и H2 – её проекции на биссектрисы внутреннего и внешнего углов при вершине B . Докажите, что прямая H1H2 делит сторону AC пополам.
Прислать комментарий     Решение


Задача 108679

Темы:   [ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Правильный (равносторонний) треугольник ]
[ Четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Дан выпуклый четырёхугольник ABMC , в котором AB=BC , BAM = 30o , ACM= 150o . Докажите, что AM – биссектриса угла BMC .
Прислать комментарий     Решение


Задача 108699

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Дан остроугольный треугольник ABC; B1 и C1 – основания высот, опущенных из вершин B и C соответственно. Точка D – основание перпендикуляра, опущенного из точки B1 на AB; E – точка пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB1. Докажите, что  EC1 || AC.

Прислать комментарий     Решение

Задача 109841

Темы:   [ Биссектриса делит дугу пополам ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Средняя линия треугольника ]
[ Вспомогательные равные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4
Классы: 9,10,11

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 110216

Темы:   [ Биссектриса делит дугу пополам ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC .
Прислать комментарий     Решение


Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .