ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 501]      



Задача 111082

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC вершины A , B и точка пересечения высот треугольника E лежат на окружности, которая пересекает отрезок BC в точке D . Найдите радиус окружности, если CD=4 , BD=5 .
Прислать комментарий     Решение


Задача 111083

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC вершины A , B и точка пересечения высот треугольника E лежат на окружности, которая пересекает отрезок BC в точке D . Найдите длину отрезка CD , если ABC= 2 arcsin , а радиус окружности R=5 .
Прислать комментарий     Решение


Задача 111084

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC вершины A , B и точка пересечения высот треугольника E лежат на окружности, которая пересекает отрезок BC в точке D . Найдите радиус окружности, если AC=3 , CD=2 .
Прислать комментарий     Решение


Задача 111085

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC вершины A , B и точка пересечения высот треугольника E лежат на окружности, которая пересекает отрезок BC в точке D . Найдите радиус окружности, если ABC= 2 arctg , CD=8 .
Прислать комментарий     Решение


Задача 111569

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

Хорды AC и BD окружности пересекаются в точке P . Перпендикуляры к AC и BD , восставленные в точках C и D соответственно, пересекаются в точке Q . Докажите, что прямые AB и PQ перпендикулярны.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .