Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 501]
Внутри отрезка AB взята точка C. По одну сторону от
прямой AB построены равнобедренные треугольники ADC и
CEB, причём
AD = DC = CE = EB. Точка F находится на
расстоянии, равном AD, от вершин D и E и не совпадает
с точкой C. Докажите, что AF = FB
Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ.
Многоугольник
A1A2...A2n вписанный. Про все
пары его противоположных сторон, кроме одной, известно, что они
параллельны. Докажите, что при n нечетном оставшаяся пара сторон тоже
параллельна, а при n четном оставшаяся пара сторон равна по длине.
Окружность S1 с диаметром AB пересекает
окружность S2 с центром A в точках C и D. Через точку B
проведена прямая, пересекающая S2 в точке M, лежащей
внутри S1, а S1 в точке N. Докажите, что
MN2 = CN . ND.
|
|
Сложность: 5+ Классы: 9,10,11
|
Дан остроугольный треугольник ABC и точка P, не совпадающая с точкой пересечения его высот. Докажите, что окружности, проходящие через середины сторон треугольников PAB, PAC, PBC и ABC, а также окружность, проходящая через проекции точки P на стороны треугольника ABC, пересекаются в одной точке.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 501]