ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



Задача 52506

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4+
Классы: 8,9

Докажите, что если диагонали вписанного четырёхугольника перпендикулярны, то середины его сторон и основания перпендикуляров, опущенных из точки пересечения его диагоналей на стороны, лежат на одной окружности.

Прислать комментарий     Решение


Задача 52778

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Описанные четырехугольники ]
Сложность: 4+
Классы: 8,9

В четырёхугольник ABCD можно вписать и вокруг него можно описать окружность. Диагонали этого четырёхугольника взаимно перпендикулярны. Найдите его площадь, если радиус описанной окружности равен R и AB = 2BC.

Прислать комментарий     Решение


Задача 67217

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Планиметрия (прочее) ]
Сложность: 6
Классы: 8,9,10,11

В треугольнике $ABC$ с тупым углом $B$ отмечены такие точки $P$ и $Q$ на $AC$, что $AP=PB$, $BQ=QC$. Окружность $BPQ$ пересекает стороны $AB$ и $BC$ в точках $N$ и $M$ соответственно.

а) (П.Рябов) Докажите, что точка $R$ пересечения $PM$ и $NQ$ равноудалена от $A$ и $C$.

б) (А.Заславский) Пусть $BR$ пересекает $AC$ в точке $S$. Докажите, что $MN\perp OS$, где $O$ – центр описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 103913

Темы:   [ Вписанный угол равен половине центрального ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него.
Доказать, что, если  ∠BAO = ∠DAC,  то диагонали четырёхугольника перпендикулярны.

Прислать комментарий     Решение

Задача 102481

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

Четырёхугольник PQRS вписан в окружность. Диагонали PR и QS перпендикулярны и пересекаются в точке M. Известно, что  PS = 13,  QM = 10,  QR = 26.  Найдите площадь четырёхугольника PQRS.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .