Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 769]
Две прямые, пересекающиеся в точке C, касаются окружности с центром O в точках A и B. Известно, что ∠ACB = 120°. Докажите, что AC + BC = OC.
Окружность касается двух параллельных прямых и их секущей.
Докажите, что отрезок секущей, заключённый между параллельными прямыми, виден из центра окружности под прямым углом.
Две прямые, проходящие через точку M, лежащую вне окружности с центром O, касаются окружности в точках A и B. Отрезок OM делится окружностью пополам. В каком отношении отрезок OM делится прямой
AB?
Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.
В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 769]