ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 772]      



Задача 56657

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая отрезки PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной.
Прислать комментарий     Решение


Задача 56658

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

Вписанная окружность треугольника ABC касается стороны BC в точке K, а вневписанная — в точке L. Докажите, что  CK = BL = (a + b - c)/2, где a, b, c — длины сторон треугольника.
Прислать комментарий     Решение


Задача 56659

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

На основании AB равнобедренного треугольника ABC взята точка E, и в треугольники ACE и ECB вписаны окружности, касающиеся отрезка CE в точках M и N. Найдите длину отрезка MN, если известны длины отрезков AE и BE.
Прислать комментарий     Решение


Задача 56685

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL.
Прислать комментарий     Решение


Задача 66918

Темы:   [ Общая касательная к двум окружностям ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

Окружности $\omega_1$ и $\omega_2$ пересекаются в точках $P$ и $Q$. Пусть $O$ – точка пересечения общих внешних касательных к $\omega_1$ и $\omega_2$. Прямая, проходящая через точку $O$, пересекает $\omega_1$ и $\omega_2$ в точках $A$ и $B$ соответственно, так, что эти две точки лежат по одну сторону от $PQ$. Прямая $PA$ повторно пересекает $\omega_2$ в точке $C$, а прямая $QB$ повторно пересекает $\omega_1$ в точке $D$. Докажите, что $O$, $C$ и $D$ лежат на одной прямой.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .