ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 769]      



Задача 54797

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

В треугольнике PQR медиана, проведённая из вершины Q, равна $ {\frac{3\sqrt{21}}{4}}$. Окружности с центрами в вершинах P и R и радиусами соответственно 5 и 1 касаются друг друга, а вершина Q лежит на прямой, касающейся каждой из окружностей. Найдите площадь S треугольника PQR, если известно, что S < 7.

Прислать комментарий     Решение


Задача 102463

Темы:   [ Теорема синусов ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Окружность, вписанная в равнобедренный треугольник ABC, касается основания AC в точке D и боковой стороны AB в точке E. Точка F — середина стороны AB, а точка G — точка пересечения окружности и отрезка FD, отличная от D. Касательная к окружности, проходящая через точку G, пересекает сторону AB в точке H. Найдите угол BCA, если известно, что FH : HE = 2 : 3.

Прислать комментарий     Решение


Задача 102464

Темы:   [ Теорема синусов ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

Окружность, вписанная в равнобедренный треугольник KLM, касается основания KM в точке N и боковой стороны KL в точке P. Точка Q — середина стороны KL, а точка R — точка пересечения окружности и отрезка QN, отличная от N. Касательная к окружности, проходящая через точку R, пересекает сторону KL в точке T. Найдите угол LMK, если известно, что QT : TP = 3 : 2.

Прислать комментарий     Решение


Задача 102489

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

В треугольнике ABC длина биссектрисы AL равна l; в треугольник ABL вписана окружность, касающаяся стороны AB в точке K, BK = b. На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно так, что прямая MN проходит через центр окружности, вписанной в треугольник ABC, причем MB + BN = c. Найдите отношение площадей треугольников ABL и MBN.

Прислать комментарий     Решение


Задача 52476

Темы:   [ Теорема синусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4+
Классы: 8,9

Две окружности радиусов R и r пересекаются в точках A и B и касаются прямой в точках C и D; N — точка пересечения прямых AB и CD (B между A и N). Найдите:

1) радиус окружности, описанной около треугольника ACD;

2) отношение высот треугольников NAC и NAD, опущенных из вершины N.

Прислать комментарий     Решение


Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .