Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 772]      



Задача 67344

Темы:   [ Гомотетичные многоугольники ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Бутырин Б.

В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$.
Прислать комментарий     Решение


Задача 54786

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4+
Классы: 8,9

На сторонах BC, CA и AB треугольника взяты точки A1, B1, C1 соответственно, причём радиусы окружностей, вписанных в треугольники A1BC1, AB1C1 и A1B1C, равны между собой и равны r. Радиус окружности, вписанной в треугольник A1B1C1, равен r1. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 64366

Темы:   [ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Симметрия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 10,11

Автор: Ильясов С.

В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.

Прислать комментарий     Решение

Задача 52444

Темы:   [ Касающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9

Две окружности радиусов r и R (r < R) касаются друг друга внешним образом. Прямая касается этих окружностей в точках M и N. В точках A и B окружности касаются внешним образом третьей окружности. Прямые AB и MN пересекаются в точке C. Из точки C проведена касательная к третьей окружности (D — точка касания). Найдите CD.

Прислать комментарий     Решение


Задача 66790

Темы:   [ Проективная геометрия (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 10,11

В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.
Прислать комментарий     Решение


Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .