Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 401]
Через точку P, лежащую на общей хорде двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности.
Докажите, что четырёхугольник KLMN вписанный.
На продолжении хорды KL окружности с центром O взята точка
A, и из неё проведены касательные AP и AQ (P и Q – точки касания); M – середина отрезка PQ. Докажите, что ∠MKO = ∠MLO.
Через точку P, лежащую на общей хорде AB двух
пересекающихся окружностей, проведены хорда KM первой
окружности и хорда LN второй окружности. Докажите, что
четырехугольник KLMN вписанный.
В параллелограмме ABCD диагональ AC больше
диагонали BD; M — такая точка диагонали AC, что
четырехугольник BCDM вписанный. Докажите, что прямая BD
является общей касательной к описанным окружностям
треугольников ABM и ADM.
|
|
Сложность: 3 Классы: 9,10,11
|
Окружность пересекает оси координат в точках А(a, 0), B(b, 0) C(0, c) и D(0, d). Найдите координаты её центра.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 401]