Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 401]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри окружности расположен прямоугольник $ABCD$. Лучи $BA$ и $DA$ пересекают окружность в точках $A_1$ и $A_2$. Точка $A_0$ – середина хорды $A_1A_2$. Аналогично определяются точки $B_0$, $C_0$, $D_0$. Докажите, что отрезки $A_0C_0$ и $B_0D_0$ равны.
|
|
Сложность: 3 Классы: 8,9,10
|
Вписанная и вневписанная окружности треугольника $ABC$ касаются отрезка $AC$ в точках $P$ и $Q$ соответственно. Прямые $BP$ и $BQ$ вторично пересекают описанную окружность треугольника $ABC$ в точках $P'$ и $Q'$ соответственно.
Докажите, что $PP' > QQ'$.
Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника: AEF, BGH, CIJ, DKL (EF, GH, IJ, KL – дуги окружности). Докажите, что
а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.
Биссектриса угла A треугольника ABC пересекает серединный перпендикуляр к стороне AB в точке X, серединный перпендикуляр к стороне AC – в точке Y, а описанную окружность треугольника – в точке Z. Точки A, X, Y и Z лежат на биссектрисе в порядке перечисления. Докажите, что AX = YZ.
В равнобедренной трапеции
ABCD основания
AD и
BC связаны
равенством
AD = (1
+)
BC . Построена окружность с
центром в точке
C радиуса
BC , высекающая на
основании
AD хорду
EF длины
BC . В каком
отношении окружность делит сторону
CD ?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 401]