ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений  F(x) = 0,  G(x) = 0,  F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).

Вниз   Решение


Известно, что  а > 1.  Обязательно ли имеет место равенство   = ?

ВверхВниз   Решение


Существует ли такая функция  f(x), определённая для всех действительных чисел, что  f(sin x) + f(cos x) = sin x?

ВверхВниз   Решение


Найдите все значения x, удовлетворяющие неравенству  (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4aa² < 0  хотя бы при одном значении a из отрезка  [–1, 2].

ВверхВниз   Решение


Автор: Мусин О.

Докажите, что если числа a1, a2, ..., am  отличны от нуля и для любого целого  k = 0, 1, ..., n  (n < m – 1)  выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0,  то в последовательности a1, a2, ..., am  есть по крайней мере  n + 1  пара соседних чисел, имеющих разные знаки.

ВверхВниз   Решение


В треугольнике ABC высота и медиана, проведённые из вершины A, образуют (вместе с прямой BC) треугольник, в котором биссектриса угла A является медианой, а высота и медиана, проведённые из вершины B, образуют (вместе с прямой AC) треугольник, в котором биссектриса угла B является биссектрисой. Найдите отношение сторон треугольника ABC.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 125]      



Задача 56735

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что гиперболический пучок содержит две предельные точки, параболический — одну, а эллиптический — ни одной.
Прислать комментарий     Решение


Задача 56736

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что если окружность ортогональна двум окружностям пучка, то она ортогональна и всем остальным окружностям пучка.
Прислать комментарий     Решение


Задача 56737

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что семейство всех окружностей, ортогональным окружностям данного пучка, образует пучок.

Прислать комментарий     Решение


Задача 56738

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что предельная точка пучка является общей точкой окружностей ортогонального пучка, и наоборот.
Прислать комментарий     Решение


Задача 66807

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9,10,11

В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .