Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 292]
Окружность отсекает от прямоугольника ABCD четыре прямоугольных треугольника, середины гипотенуз которых A0, B0, C0 и D0 соответственно.
Докажите, что отрезки A0C0 и B0D0 равны.
|
|
Сложность: 3+ Классы: 9,10
|
В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Расстояние от некоторой точки внутри правильного шестиугольника до трёх его последовательных вершин равны 1, 1 и 2 соответственно.
Чему равна сторона этого шестиугольника?
В трапеции ABCD, описанной около окружности,
BCAD, AB = CD,
BAD = 45o. Площадь трапеции равна 10. Найдите AB.
Для каждой точки C полуокружности с диаметром AB (C отлична от A и B) на сторонах AC и BC треугольника ABC построены вне треугольника квадраты. Найдите геометрическое место середин отрезков, соединяющих их центры.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 292]