Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 166]
На боковых сторонах AB и CD трапеции ABCD отмечены точки P и Q так, что прямая PQ параллельна AD, а отрезок PQ делится диагоналями трапеции на три равные части. Найдите длину оонования BC, если известно, что AD = a, PQ = m, а точка пересечения диагоналей трапеции лежит внутри четырёхугольника BPCQ.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В трапеции ABCD боковая сторона AB равна меньшему основанию BC, а диагональ AC равна основанию AD. Прямая, проходящая через вершину B параллельно AC, пересекает прямую DC в точке M. Докажите, что AM – биссектриса угла BAC.
Через концы основания BC трапеции ABCD провели окружность, которая пересекла боковые стороны AB и CD в точках M и N соответственно. Известно, что точка T пересечения отрезков AN и DM также лежит на этой окружности. Докажите, что TB = TC.
|
|
Сложность: 3+ Классы: 8,9,10
|
В трапеции $ABCD$ основание $AD$ вдвое больше основания $BC$, а угол $C$ в полтора раза больше угла $A$. Диагональ $AC$ делит угол $C$ на два угла. Определите, какой из них больше?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 166]