Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 507]
Каждая вершина правильного 13-угольника покрашена либо в чёрный, либо в белый
цвет.
Доказать, что существуют три точки одного цвета, лежащие в вершинах
равнобедренного треугольника.
|
|
Сложность: 3+ Классы: 10,11
|
Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.
В выпуклом шестиугольнике
ABCDEF все внутренние углы при вершинах
равны. Известно, что
AB = 3,
BC = 4,
CD = 5 и
EF = 1. Найдите длины
сторон
DE и
AF.
В выпуклом шестиугольнике
KLMNEF все внутренние углы при вершинах
равны. Известно, что
KL = 6,
LM = 8,
MN = 10 и
EF = 2. Найдите длины
сторон
NE и
KF.
|
|
Сложность: 3+ Классы: 7,8,9
|
В вершинах правильного девятиугольника расставляют числа 1, 2, 3, 4, 5, 6, 7, 8, 9, после чего на каждой диагонали пишут произведение чисел, стоящих на её концах. Можно ли так расставить числа в вершинах, чтобы все числа на диагоналях были разные?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 507]