Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 241]
|
|
Сложность: 3+ Классы: 9,10,11
|
В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности.
|
|
Сложность: 3+ Классы: 9,10
|
Дан треугольник
ABC и точка
O.
M1,
M2,
M3 — центры тяжести
треугольников
OAB,
OBC,
OCA соответственно. Доказать, что площадь
треугольника
M1M2M3 равна 1/9 площади
ABC.
Известно, что
Z1 + ... +
Zn = 0, где
Zk — комплексные числа. Доказать,
что среди этих чисел найдутся два таких, что разность их аргументов больше
или равна
120
o.
|
|
Сложность: 3+ Классы: 10,11
|
Точки
A и
B движутся равномерно и с равными угловыми скоростями по
окружностям
O1 и
O2 соответственно (по часовой стрелке). Доказать, что
вершина
C правильного треугольника
ABC также движется равномерно по
некоторой окружности.
На сторонах треугольника
ABC вне его построены правильные треугольники
ABC1,
BCA1 и
CAB1. Доказать, что

+

+

=

.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 241]