Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 40]
|
|
Сложность: 4- Классы: 9,10,11
|
Дан описанный четырёхугольник $ABCD$ с тупым углом $ABC$. Лучи $AB$ и $DC$ пересекаются в точке $P$, а лучи $DA$ и $CB$ – в точке $Q$. Докажите, что $|AD - CD| \geq |r_1 - r_2|$, где $r_1$ и $r_2$ – радиусы вписанных окружностей треугольников $PBC$ и $QAB$.
|
|
Сложность: 4 Классы: 9,10,11
|
Длина каждой из сторон выпуклого шестиугольника ABCDEF меньше 1. Может ли длина каждой из диагоналей АD, ВЕ и CF быть не меньше 2?
В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD).
а) Докажите неравенство P ≥ 2BD.
б) В каких случаях это неравенство превращается в равенство?
Докажите, что если в четырехугольнике два
противоположные угла тупые, то диагональ,
соединяющая вершины этих углов, меньше другой диагонали.
Пусть M – внутренняя точка прямоугольника ABCD, а S – его площадь. Докажите, что S ≤ AM·CM + BM·DM.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 40]