ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 77]      



Задача 111362

Темы:   [ ГМТ - прямая или отрезок ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место центров прямоугольников, вписанных в треугольник ABC так, что одна сторона прямоугольника лежит на наибольшей стороне AB , а концы противоположной стороны – на сторонах AC и BC .
Прислать комментарий     Решение


Задача 115614

Темы:   [ ГМТ - прямая или отрезок ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике сумма расстояний от любой точки внутри четырёхугольника до четырёх прямых, на которых лежат стороны четырёхугольника, постоянна. Докажите, что этот четырёхугольник — параллелограмм.
Прислать комментарий     Решение


Задача 55700

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

Найдите геометрическое место точек, расположенных внутри данного угла, сумма расстояний от которых до сторон этого угла равна данной величине.

Прислать комментарий     Решение


Задача 57133

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  $ \angle$AMD + $ \angle$BMC = 180o.
Прислать комментарий     Решение


Задача 57138

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

а) Дан параллелограмм ABCD. Докажите, что величина  AX2 + CX2 - BX2 - DX2 не зависит от выбора точки X.
б) Четырехугольник ABCD не является параллелограммом. Докажите, что все точки X, удовлетворяющие соотношению  AX2 + CX2 = BX2 + DX2, лежат на одной прямой, перпендикулярной отрезку, соединяющему середины диагоналей.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .