ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 52612

Темы:   [ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ и вписанный угол ]
[ Вписанный угол (построения) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки на данной прямой MN постройте точку, из которой данный отрезок AB был бы виден под данным углом.

Прислать комментарий     Решение


Задача 54556

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Углы между биссектрисами ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ и вписанный угол ]
Сложность: 4-
Классы: 8,9

На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите множество точек пересечения биссектрис треугольников ABC.

Прислать комментарий     Решение


Задача 108009

Темы:   [ Треугольник (построения) ]
[ Подерный (педальный) треугольник ]
[ Правильный (равносторонний) треугольник ]
[ ГМТ и вписанный угол ]
[ Метод ГМТ ]
[ Подобные треугольники (прочее) ]
[ Теорема синусов ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9

Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Задача 107779

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательные равные треугольники ]
[ ГМТ и вписанный угол ]
Сложность: 3+
Классы: 7,8,9

Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

Прислать комментарий     Решение

Задача 111783

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - окружность или дуга окружности ]
[ ГМТ и вписанный угол ]
Сложность: 4-
Классы: 8,9

На стороне BC треугольника ABC выбрана произвольная точка D . В треугольники ABD и ACD вписаны окружности с центрами K и L соответственно. Докажите, что описанные окружности треугольников BKD и CLD вторично пересекаются на фиксированной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .