ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 35538

Темы:   [ Покрытия ]
[ Индукция (прочее) ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4-
Классы: 9,10,11

Несколько отрезков покрывают отрезок  [0, 1].
Докажите, что среди них можно выбрать несколько непересекающихся отрезков, сумма длин которых не меньше ½.

Прислать комментарий     Решение

Задача 98098

Темы:   [ Окружности на сфере ]
[ Отношение эквивалентности. Классы эквивалентности ]
[ Системы отрезков, прямых и окружностей ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 10,11

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

Прислать комментарий     Решение

Задача 109455

Темы:   [ Ортогональная проекция (прочее) ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4-
Классы: 10,11

Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
а) три отрезка имеют равные длины?
б) длины двух отрезков равны между собой и не равны длине третьего?
Прислать комментарий     Решение


Задача 73871

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Произвольные многоугольники ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4+
Классы: 8,9,10

Автор: Фомин С.В.

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Прислать комментарий     Решение


Задача 98355

Темы:   [ Свойства коэффициентов многочлена ]
[ Принцип крайнего (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Системы отрезков, прямых и окружностей ]
[ Геометрические интерпретации в алгебре ]
Сложность: 5-
Классы: 9,10

Пусть  1 + x + x² + ... + xn–1 = F(x)G(x),  где F и G – многочлены, коэффициенты которых – нули и единицы  (n > 1).
Докажите, что один из многочленов F, G представим в виде  (1 + x + x² + ... + xk–1)T(x),  где T(x) – также многочлен с коэффициентами 0 и 1  (k > 1).

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .