ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1027]      



Задача 116286

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Теория игр (прочее) ]
Сложность: 5
Классы: 10,11

Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?

Прислать комментарий     Решение

Задача 97774

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Комбинаторика (прочее) ]
[ Двоичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 5+
Классы: 9,10,11

Автор: Анджанс А.

N друзей одновременно узнали N новостей, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями.
Каждый разговор длится 1 час. За один разговор можно передать сколько угодно новостей.
Какое минимальное количество часов необходимо, чтобы все узнали все новости? Рассмотрите три случая:
  а)  N = 64,
  б)  N = 55,
  в)  N = 100.

Прислать комментарий     Решение

Задача 103826

Темы:   [ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2-
Классы: 6

Расположите в кружочках (вершинах правильного десятиугольника) числа от 1 до 10 так, чтобы для любых двух соседних чисел их сумма была равна сумме двух чисел, им противоположных (симметричных относительно центра окружности).

Прислать комментарий     Решение


Задача 103825

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?

Прислать комментарий     Решение


Задача 32038

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .