Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1036]
|
|
Сложность: 3 Классы: 8,9,10
|
Внутри забора, представляющего собой замкнутую несамопересекающуюся ломаную, заперт тигр. На рисунке видна только часть забора (положение тигра показано крестиком). Нарисуйте, как мог бы выглядеть весь забор (забор может идти только по линиям сетки).
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?
Натуральные числа от 1 до 2014 как-то разбили на пары, числа в каждой из пар сложили, а полученные 1007 сумм перемножили.
Мог ли результат оказаться квадратом натурального числа?
|
|
Сложность: 3+ Классы: 7,8,9
|
Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
а) k = 9; б) k = 8?
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 1036]