Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 115]
Даны две окружности. Их общие внутренние касательные взаимно
перпендикулярны. Хорды, соединяющие точки касания, равны 3 и 5.
Найдите расстояние между центрами окружностей.
Расстояние между центрами двух окружностей, лежащих одна вне другой, равно 65; длина их общей внешней касательной (между точками касания) равна 63; длина их общей внутренней касательной равна 25. Найдите радиусы окружностей.
Две окружности, радиусы которых равны R и r, расположены
одна вне другой. Отрезки общих внутренних касательных AC и BD
(A, B, C, D – точки касания) равны a. Найдите площадь
четырёхугольника ABCD.
Даны две непересекающиеся окружности, к которым проведены две общие внешние касательные. Рассмотрим равнобедренный треугольник, основание которого лежит на одной касательной, противоположная вершина – на другой, а каждая из боковых сторон касается одной из данных окружностей. Докажите, что высота треугольника равна сумме радиусов окружностей.
|
|
Сложность: 3+ Классы: 10,11
|
Внутри угла AOD проведены лучи OB и OC, причём ∠AOB = ∠COD. В углы AOB и COD вписаны непересекающиеся окружности.
Докажите, что точка пересечения общих внутренних касательных к этим окружностям лежит на биссектрисе угла AOD.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 115]