ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждая из сторон выпуклого шестиугольника имеет длину больше 1. Всегда ли в нем найдется диагональ длины больше 2?

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 115]      



Задача 53131

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4
Классы: 8,9

В угол вписаны две окружности; у них есть общая внутренняя касательная T1T2 (T1 и T2 — точки касания), которая пересекает стороны угла в точках A1 и A2. Докажите, что A1T1 = A2T2 (или, что эквивалентно, A1T2 = A2T1).

Прислать комментарий     Решение


Задача 55446

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

К двум непересекающимся окружностям проведены общие касательные. Угол между внешними касательными равен $ \alpha$, а угол между внутренними касательными равен $ \beta$. Найдите угол между прямыми, проведёнными из центра окружности большего радиуса и касающимися второй окружности.

Прислать комментарий     Решение


Задача 108530

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Окружность C1 радиуса 2$ \sqrt{3}$ с центром O1 и окружность C2 радиуса $ \sqrt{3}$ с центром O2 расположены так, что O1O2 = 2$ \sqrt{13}$. Прямая l1 касается окружностей в точках A1 и A2, а прямая l2— в точках B1 и B2. Окружности C1 и C2 лежат по одну сторону от прямой l1 и по разные стороны от прямой l2, A1 $ \in$ C1, B1 $ \in$ C1, A2 $ \in$ C2, B2 $ \in$ C2, точки A1 и B1 лежат по разные стороны от прямой O1O2. Через точку B1 проведена прямая l3, перпендикулярная прямой l2. Прямая l1 пересекает прямую l2 в точке A, а прямую l3 — в точке B. Найдите A1A2, B1B2 и стороны треугольника ABB1.

Прислать комментарий     Решение


Задача 66953

Темы:   [ Общая касательная к двум окружностям ]
[ Радикальная ось ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 9,10,11

Дан остроугольный треугольник $ABC$. Точки $A_0$ и $C_0$ – середины меньших дуг соответственно $BC$ и $AB$ его описанной окружности. Окружность, проходящая через $A_0$ и $C_0$, пересекает прямые $AB$ и $BC$ в точках $P$ и $S$, $Q$ и $R$ соответственно (все эти точки различны). Известно, что $PQ\parallel AC$. Докажите, что $A_0P+C_0S=C_0Q+A_0R$
Прислать комментарий     Решение


Задача 108947

Темы:   [ Общая касательная к двум окружностям ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Пусть S1 и S2 – две окружности, лежащие одна вне другой. Общая внешняя касательная касается их в точках A и B . Окружность S3 проходит через точки A и B и вторично пересекает окружности S1 и S2 в точках C и D соответственно; K – точка пересечения прямых, касающихся окружностей S1 и S2 соответственно в точках C и D . Докажите, что KC=KD .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 115]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .