Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 139]
В прямоугольный треугольник ABC с углом A, равным
30o, вписана
окружность радиуса R. Вторая окружность, лежащая вне треугольника,
касается стороны BC и продолжений двух других сторон.
Найдите расстояние между центрами этих окружностей.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Докажите, что точки пересечения средних линий треугольника $ABC$ со сторонами треугольника, вершинами которого являются центры вневписанных окружностей, лежат на одной окружности.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$.
а) Какое наибольшее число различных может быть среди них?
б) Найдите все возможные количества различных длин.
|
|
Сложность: 3+ Классы: 9,10
|
Дан треугольник
ABC. Построим треугольник, стороны которого касаются
вневписанных окружностей этого треугольника. Зная углы исходного треугольника,
найти углы построенного.
В треугольнике PQR угол QRP равен
60o. Найдите
расстояние между точками касания со стороной QR окружности
радиуса 2, вписанной в треугольник, и окружности радиуса 3,
касающейся продолжений сторон PQ и PR.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 139]