Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 139]
[Теорема Мансиона.]
|
|
Сложность: 5- Классы: 8,9
|
Докажите, что отрезок, соединяющий центры вписанной и
вневписанной окружностей треугольника, делится описанной
окружностью пополам.
В треугольнике ABC через середину M стороны BC и центр O
вписанной в этот треугольник окружности проведена прямая MO,
которая пересекает высоту AH в точке E. Докажите, что отрезок AE
равен радиусу вписанной окружности.
|
|
Сложность: 5- Классы: 9,10,11
|
Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что AP = BQ.
|
|
Сложность: 5- Классы: 9,10
|
Пусть A', B' и C' – точки касания вневписанных
окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1
подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами.
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 139]