Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 232]
|
|
Сложность: 3+ Классы: 10,11
|
В треугольнике ABC точка X лежит на стороне AB, а точка Y – на стороне BC. Отрезки AY и CX пересекаются в точке Z. Известно, что AY = CY и
AB = CZ. Докажите, что точки B, X, Z и Y лежат на одной окружности.
|
|
Сложность: 3+ Классы: 8,9,10
|
На продолжении стороны BC треугольника ABC за вершину B
отложен отрезок BB', равный стороне AB. Биссектрисы внешних углов при вершинах B и C пересекаются в точке M. Докажите, что точки A, B', C и M лежат на одной окружности.
Oколо четырёхугольника ABCD можно описать окружность. Точка P – основание перпендикуляра, опущенного из точки A на прямую BC, Q – из A на DC, R – из D на AB и T – из D на BC. Докажите, что точки P, Q, R и T лежат на одной окружности.
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 232]