Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 306]
Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны.
Окружность касается сторон AC и BC треугольника ABC в точках A и B соответственно. На дуге этой окружности, лежащей внутри треугольника, расположена точка K так, что расстояния от неё до сторон AC и BC равны 6 и 24 соответственно. Найдите расстояние от точки K до стороны AB.
Четырёхугольник ABCD вписан в окружность с диаметром AC. Точки K и M – проекции вершин A и C соответственно на прямую BD. Через точку K проведена прямая, параллельная BC и пересекающая AC в точке P. Докажите, что угол KPM – прямой.
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть O – центр описанной окружности остроугольного неравнобедренного треугольника ABC, точка C1 симметрична C относительно O, D – середина стороны AB, K – центр описанной окружности треугольника ODC1. Докажите, что точка O делит пополам отрезок прямой OK, лежащий внутри угла ACB.
Вписанная в треугольник ABC окружность касается его сторон
AC и BC в точках M и N соответственно и пересекает биссектрису
BD в точках P и Q. Найдите отношение площадей треугольников PQM
и PQN, если
A =
,
B =
.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 306]