ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года? |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 306]
Дана полуокружность с диаметром AB. С помощью циркуля и линейки постройте хорду MN, параллельную AB, так, чтобы трапеция AMNB была описанной.
На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.
В остроугольном треугольнике $ABC$ высоты $AH_A$, $BH_B$ и $CH_C$ пересекаются в точке $H$. Через точки, в которых окружность радиуса $HH_A$ с центром $H$ пересекает отрезки $BH$ и $CH$, проведена прямая $\ell_A$. Аналогично проведены прямые $\ell_B$ и $\ell_C$. Докажите, что точка пересечения высот треугольника, образованного прямыми $\ell_A$, $\ell_B$, $\ell_C$, совпадает с центром окружности, вписанной в треугольник $ABC$.
Пусть O – центр описанной окружности остроугольного треугольника ABC . Прямая BO вторично пересекает описанную окружность в точке D , а продолжение высоты, опущенной из вершины A , пересекает окружность в точке E . Докажите, что площадь четырёхугольника BECD равна площади треугольника ABC .
Внутри острого угла XAY взята точка D , а на его
сторонах AX и AY – точки B и C соответственно,
причём
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке