ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 402]      



Задача 65020

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства параллелограмма ]
[ Три точки, лежащие на одной прямой ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Точки C' и D' диаметрально противоположны точкам C и D соответственно. Касательные к окружности в точках C' и D' пересекают прямую AB в точках E и F (A лежит между E и B, B – между A и F). Прямая EO пересекает стороны AC и BC в точках X и Y, а прямая FO пересекает стороны AD и BD в точках U и V. Докажите, что  XV = YU.

Прислать комментарий     Решение

Задача 109809

Темы:   [ Описанные четырехугольники ]
[ Признаки и свойства параллелограмма ]
[ Конкуррентность высот. Углы между высотами. ]
[ Окружность, вписанная в угол ]
[ Описанные четырехугольники ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

Четырехугольник ABCD описан около окружности. Биссектрисы внешних углов A и B пересекаются в точке K , внешних углов B и C – в точке L , внешних углов C и D – в точке M , внешних углов D и A – в точке N . Пусть K1 , L1 , M1 , N1 – точки пересечения высот треугольников ABK , BCL , CDM , DAN соответственно. Докажите, что четырехугольник K1L1M1N1 – параллелограмм.
Прислать комментарий     Решение


Задача 52474

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
Сложность: 4+
Классы: 8,9

В параллелограмме ABCD диагональ AC больше диагонали BD. Точка M на диагонали AC такова, что около четырёхугольника BCDM можно описать окружность. Докажите, что BD — общая касательная окружностей, описанных около треугольников ABM и ADM.

Прислать комментарий     Решение


Задача 55377

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Признаки и свойства параллелограмма ]
[ Поворот помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Автор: Купцов Л.

На сторонах треугольника ABC во внешнюю сторону построены подобные между собой треугольники ADB, BEC и CFA ($ {\frac{AD}{DB}}$ = $ {\frac{BE}{EC}}$ = $ {\frac{CF}{FA}}$ = k; $ \angle$ADB = $ \angle$BEC = $ \angle$CFA = $ \alpha$). Докажите, что:

1) середины отрезков AC, DC, BC и EF — вершины параллелограмма;

2) у этого параллелограмма два угла равны $ \alpha$, а отношение сторон равно k.

Прислать комментарий     Решение


Задача 55606

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Признаки и свойства параллелограмма ]
[ Осевая и скользящая симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9

На плоскости дан треугольник ABC и точка M. Известно, что точки, симметричные точке M относительно двух сторон треугольника ABC попадают на окружность, описанную около треугольника ABC. Докажите, что точка, симметричная точке M относительно третьей стороны, также попадает на эту окружность.

Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .