ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 108170

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC взяты точки C' , A' и B' соответственно. Докажите, что площадь треугольника A'B'C' равна

,

где R – радиус описанной окружности треугольника ABC .
Прислать комментарий     Решение

Задача 109034

Темы:   [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Формулы для площади треугольника ]
[ Треугольник (построения) ]
Сложность: 4
Классы: 8,9,10

Даны три точки A,B,C . Где на прямой AC нужно выбрать точку M , чтобы сумма радиусов окружностей, описанных около треугольников ABM и CBM , была наименьшей?
Прислать комментарий     Решение


Задача 78498

Темы:   [ Площадь треугольника (прочее) ]
[ Векторы помогают решить задачу ]
[ Псевдоскалярное произведение ]
[ Формулы для площади треугольника ]
Сложность: 5-
Классы: 9,10,11

Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других.
Прислать комментарий     Решение


Задача 52683

Темы:   [ Вневписанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Формулы для площади треугольника ]
Сложность: 4
Классы: 8,9

В треугольнике ABC с периметром 2p острый угол BAC равен $ \alpha$. Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD = a. Найдите площадь треугольника DOK.

Прислать комментарий     Решение


Задача 55233

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Отношения линейных элементов подобных треугольников ]
[ Средняя линия треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формулы для площади треугольника ]
[ Гомотетия помогает решить задачу ]
[ Неравенство Коши ]
Сложность: 4
Классы: 8,9

Докажите, что в любом треугольнике имеет место неравенство  R ≥ 2r, где R и r – радиусы описанной и вписанной окружностей, причём равенство имеет место только для правильного треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .