Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 1221]
|
|
Сложность: 5- Классы: 9,10
|
В некотором царстве, территория которого имеет форму квадрата со стороной 2 км,
царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для
этого он в полдень посылает с поручением гонца, который может передать любое
указание любому жителю, который в свою очередь может передать любое указание
любому другому жителю и т.д. Каждый житель до поступления указания находится в
известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом
направлении (по прямой). Доказать, что царь может организовать оповещение так,
чтобы все жители успели прийти к началу бала.
|
|
Сложность: 5- Классы: 8,9,10
|
В колоде
n карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз.
За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить
ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно
добиться того, чтобы все карты лежали рубашками вниз?
|
|
Сложность: 5- Классы: 8,9,10
|
В государстве n городов, и между каждыми двумя из них курсирует экспресс (в обе стороны). Для каждого экспресса цены билетов "туда" и "обратно" равны, а для разных экспрессов эти цены различны. Докажите, что путешественник может выбрать начальный город, выехать из него и проехать последовательно на n – 1 экспрессах, платя за проезд на каждом следующем меньше, чем за проезд на предыдущем. (Путешественник может попадать несколько раз в один и тот же город.)
|
|
Сложность: 5- Классы: 10,11
|
Двое игроков играют в карточную игру. У них есть колода из n попарно различных карт. Про любые две карты из колоды известно, какая из них бьёт другую (при этом, если A бьёт B, а B бьёт C, то может оказаться, что C бьёт A). Колода распределена между игроками произвольным образом. На каждом ходу игроки открывают по верхней карте из своих колод, и тот, чья карта бьёт карту другого игрока, берёт обе карты и кладёт их в самый низ своей колоды в произвольном порядке по своему усмотрению. Докажите, что при любой исходной раздаче игроки могут, зная расположение карт, договориться и действовать так, чтобы один из игроков остался без карт.
|
|
Сложность: 5- Классы: 10,11
|
а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?
Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 1221]