ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1221]      



Задача 34913

Темы:   [ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8

Среди любых десяти из шестидесяти ребят найдутся трое одноклассников. Докажите, что среди всех них найдутся 15 одноклассников.

Прислать комментарий     Решение

Задача 35544

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
Сложность: 2+
Классы: 7,8,9

Шоколадка имеет размер 4×10 плиток. За один ход разрешается разломать один из уже имеющихся кусочков на два вдоль прямолинейного разлома. За какое наименьшее число ходов можно разбить всю шоколадку на кусочки размером в одну плитку?

Прислать комментарий     Решение

Задача 56751

Темы:   [ Медиана делит площадь пополам ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 8,9

Докажите, что медианы разбивают треугольник на шесть равновеликих треугольников.
Прислать комментарий     Решение


Задача 60461

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Количество и сумма делителей числа ]
Сложность: 2+
Классы: 7,8,9

Докажите, что составное число n всегда имеет делитель, больший 1, но не больший  .

Прислать комментарий     Решение

Задача 64494

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 2+
Классы: 5,6

Укажите какое-нибудь решение ребуса:  2014 + ГОД = СОЧИ.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .