ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 1235]      



Задача 77985

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3
Классы: 9

На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

Прислать комментарий     Решение

Задача 78055

Темы:   [ Перебор случаев ]
[ Турниры и турнирные таблицы ]
Сложность: 3
Классы: 10,11

Пять человек играют несколько партий в домино (два на два) так, что каждый играющий имеет каждого из остальных один раз партнёром и два раза противником. Найти количество сыгранных партий и все способы распределения играющих.

Прислать комментарий     Решение

Задача 78654

Тема:   [ Обратный ход ]
Сложность: 3
Классы: 9,10

В шахматном турнире участвовало 12 человек. После окончания турнира каждый участник составил 12 списков. В первый список входит только он сам, во второй -- он и те, у кого он выиграл, в третий — все люди из второго списка и те, у кого они выиграли, и т.д. В 12 список входят все люди из одиннадцатого списка и те, у кого они выиграли. Известно, что для любого участника турнира в его двенадцатый список попал человек, которого не было в его одиннадцатом списке. Сколько ничейных партий было сыграно в турнире?
Прислать комментарий     Решение


Задача 78740

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 10,11

Масса каждой из 19 гирь не больше 70 г и равна целому числу граммов. Доказать, что из этих гирь нельзя составить более 1230 различных по массе наборов.
Прислать комментарий     Решение


Задача 78805

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 8

На конгресс приехали 1000 делегатов из разных стран. Каждый делегат знает несколько языков. Известно, что любые трое могут разговаривать между собой без помощи остальных. (При этом, возможно, одному из них придётся переводить разговор двух других.) Доказать, что всех делегатов можно расселить в 500 комнатах так, чтобы в каждой комнате располагались 2 делегата и при этом они могли бы поговорить между собой.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 1235]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .