Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1224]
|
|
Сложность: 5 Классы: 10,11
|
Дано иррациональное число α, 0 < α < ½. По нему определяется новое число α1 как меньшее из двух чисел 2α и 1 – 2α. По этому числу аналогично определяется α2, и так далее.
а) Докажите, что αn < 3/16 для некоторого n .
б) Может ли случиться, что αn > 7/40 при всех натуральных n?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Назовем расстановку n единиц и m нулей по кругу хорошей, если в ней можно поменять местами соседние нуль
и единицу так, что получится расстановка, отличающаяся
от исходной поворотом. При каких натуральных n, m существует хорошая расстановка?
|
|
Сложность: 5 Классы: 9,10,11
|
Учащиеся одной школы часто собираются группами и ходят в кафе-мороженое.
После такого посещения они ссорятся настолько, что никакие двое из них после
этого вместе мороженое не едят. К концу года выяснилось, что в дальнейшем они могут ходить в кафе-мороженое только поодиночке. Докажите, что если число посещений было к этому времени больше 1, то оно не меньше числа учащихся в школе.
|
|
Сложность: 5 Классы: 9,10,11
|
Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177° равна 45. Докажите это.
|
|
Сложность: 5 Классы: 7,8,9
|
Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число a > 1, а далее под каждым числом k слева пишем число k2 , а справа — число k + 1. Докажите, что в каждой строке таблицы все числа разные.
Например, при a = 2 вторая строка состоит из чисел 4 и 3, третья — из чисел 16, 5, 9 и 4, четвёртая — из чисел 256, 17, 25, 6, 81, 10, 16 и 5.
Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 1224]