Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1224]      



Задача 97923

Темы:   [ Инварианты ]
[ Задачи на смеси и концентрации ]
[ Процессы и операции ]
Сложность: 3
Классы: 7,8,9,10

Автор: Фомин С.В.

Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?

Прислать комментарий     Решение

Задача 98011

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Автор: Гусаров М.

Найти два шестизначных числа такие, что если их приписать друг к другу, то полученное двенадцатизначное число делится на произведение двух исходных чисел. Найти все такие пары чисел.

Прислать комментарий     Решение

Задача 98063

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
Сложность: 3
Классы: 6,7,8

Автор: Фомин С.В.

Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.

Прислать комментарий     Решение

Задача 98167

Темы:   [ Математическая логика (прочее) ]
[ Арифметика. Устный счет и т.п. ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Автор: Борисов Л.

Мудрецу С. сообщили сумму трёх натуральных чисел, а мудрецу П. – их произведение.
– Если бы я знал, – сказал С., – что твоё число больше, чем моё, я бы сразу назвал три искомых числа.
– Мое число меньше, чем твоё, – ответил П., – а искомые числа ..., ... и ... .
Какие числа назвал П.?

Прислать комментарий     Решение

Задача 98472

Темы:   [ Куб ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 9,10,11

На двух противоположных гранях игрального кубика нарисовано по одной точке, на двух других противоположных – по две точки, и на двух оставшихся – по три точки. Из восьми таких кубиков сложили куб 2×2×2 и посчитали суммарное число точек на каждой из его шести граней.
Могли ли получиться шесть последовательных чисел?

Прислать комментарий     Решение

Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .