Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 222]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через A) записана единица. Через кубик A проходит три слоя, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?
В бригаде 7 человек и их суммарный возраст - 332
года. Докажите, что из них можно выбрать трех человек, сумма
возрастов которых не меньше 142 лет.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗.
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 222]