ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 217]      



Задача 78089

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Метод координат на плоскости ]
Сложность: 4+
Классы: 10,11

На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.
Прислать комментарий     Решение


Задача 78140

Темы:   [ Индукция в геометрии ]
[ Метод координат на плоскости ]
[ Геометрические неравенства (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

Бесконечная плоская ломаная A0A1...An..., все углы которой прямые, начинается в точке A0 с координатами x = 0, y = 1 и обходит начало координат O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает одну из координатных осей и имеет наименьшую возможную при этом целочисленную длину. Расстояние OAn = ln. Сумма длин первых n звеньев ломаной равна sn. Доказать, что найдётся n, для которого $ {\frac{s_n}{l_n}}$ > 1958.
Прислать комментарий     Решение


Задача 56714

Темы:   [ Радикальная ось ]
[ Метод координат на плоскости ]
Сложность: 5
Классы: 8,9,10

На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



Прислать комментарий     Решение

Задача 56977

 [Оружности Схоуте]
Темы:   [ Точки Брокара ]
[ Метод координат на плоскости ]
Сложность: 7+
Классы: 9,10,11

Опустим из точки M перпендикуляры MA1, MB1 и MC1 на прямые BC, CA и AB. Для фиксированного треугольника ABC множество точек M, для которых угол Брокара треугольника A1B1C1 имеет заданное значение, состоит из двух окружностей, причем одна из них расположена внутри описанной окружности треугольника ABC, а другая вне ее (окружности Схоуте).
Прислать комментарий     Решение


Задача 35594

Темы:   [ Геометрические интерпретации в алгебре ]
[ Максимальное/минимальное расстояние ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 9,10,11

Известно, что  x + 2y + 3z = 1.  Какое минимальное значение может принимать выражение  x² + y² + z²?

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .