Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

Доказать, что в вершинах многогранника можно расставить натуральные числа так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.

Вниз   Решение


Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.

ВверхВниз   Решение


На стороне $AC$ треугольника $ABC$ во внешнюю сторону был построен квадрат с центром $F$. Затем всё стерли, кроме точки $F$ и середин $N$, $K$ сторон $BC$, $AB$ соответственно. Восстановите треугольник.

Вверх   Решение

Задачи

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]      



Задача 110958

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в пирамиду ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде SABCD с высотой, не меньшей h , расположена полусфера радиуса r= так, что её касаются все боковые грани пирамиды, а центр полусферы лежит на основании ABC пирамиды. Найдите наименьшее возможное значение объёма пирамиды.
Прислать комментарий     Решение


Задача 110989

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильную треугольную пирамиду вписаны два шара. Первый шар радиуса r касается основания пирамиды и её боковых граней. Второй шар касается первого шара внешним образом и также боковых граней пирамиды. Найдите сумму объёмов шаров, если объём пирамиды является минимально возможным.
Прислать комментарий     Решение


Задача 110990

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110991

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых граней, а второй шар касается первого шара внешним образом и боковых рёбер пирамиды. Радиус первого шара равен r . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Задача 110992

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и также боковых рёбер пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.
Прислать комментарий     Решение


Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .