Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 26]
|
|
|
Сложность: 4+ Классы: 10,11
|
В пирамиде $SABC$ все углы при вершине $S$ прямые. Точки $A'$, $B'$, $C'$ на ребрах $SA$, $SB$, $SC$ соответственно таковы, что треугольники $ABC$ и $A'B'C'$ подобны. Верно ли, что плоскости $ABC$ и $A'B'C'$ параллельны?
|
|
|
Сложность: 4+ Классы: 10,11
|
Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую
полученную точку деления проведены две плоскости, параллельные соответственно
двум граням тетраэдра, не проходящим через эту точку. На сколько частей
построенные плоскости разбивают тетраэдр?
|
|
|
Сложность: 4- Классы: 10,11
|
На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.
Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 26]