Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 26]
В шаре радиуса 9 через точку
S проведены три равные хорды
AA1
,
BB1
и
CC1
так, что
AS = 4
,
A1
S = 8
,
BS <
B1
S ,
CS < C1
S . Найдите радиус сферы, описанной около пирамиды
SABC .
|
|
|
Сложность: 4+ Классы: 10,11
|
В тетраэдре
ABCD из вершины
A опустили перпендикуляры
AB' ,
AC' ,
AD' на плоскости, делящие двугранные углы при ребрах
CD ,
BD ,
BC
пополам. Докажите, что плоскость
(
B'C'D')
параллельна плоскости
(
BCD)
.
|
|
|
Сложность: 5 Классы: 10,11
|
Вписанная сфера треугольной пирамиды $SABC$ касается основания $ABC$ в точке $P$, а боковых граней в точках $K$, $M$ и $N$. Прямые $PK$, $PM$, $PN$ пересекают плоскость, проходящую через середины боковых рёбер пирамиды, в точках $K'$, $M'$, $N'$. Докажите, что прямая $SP$ проходит через центр описанной окружности треугольника $K'M'N'$.
|
|
|
Сложность: 4- Классы: 10,11
|
Даны две треугольные пирамиды с общим основанием $ABC$. Их вершины $S$ и $R$
лежат по разные стороны от плоскости $ABC$. Все боковые рёбра одной пирамиды параллельны соответствующим боковым граням другой. Докажите, что объём одной пирамиды вдвое больше объёма другой.
|
|
|
Сложность: 4- Классы: 10,11
|
Дан параллелепипед ABCDA1B1C1D1. На лучах C1C, C1B1 и C1D1 отложены отрезки C1M, C1N и C1K, равные соответственно 5/2 CC1, 5/2 C1B1,
5/2 C1D1. В каком отношении плоскость, проходящая через точки M, N, K, делит объём параллелепипеда ABCDA1B1C1D1.
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 26]