ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1311]      



Задача 35428

Тема:   [ Симметричная стратегия ]
Сложность: 2+
Классы: 7,8,9

На доске написано число 1. Два игрока по очереди прибавляют любое число от 1 до 5 к числу на доске и записывают вместо него сумму. Выигрывает игрок, который первый запишет на доске число тридцать. Укажите выигрышную стратегию для второго игрока.
Прислать комментарий     Решение


Задача 35429

Тема:   [ Симметричная стратегия ]
Сложность: 2+
Классы: 7,8,9

На столе лежат две стопки монет: в одной из них 30 монет, а в другой - 20. За ход разрешается взять любое количество монет из одной стопки. Проигрывает тот, кто не сможет сделать ход. Кто из игроков выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 35669

Тема:   [ Теория игр (прочее) ]
Сложность: 2+
Классы: 7,8

Ладья стоит на поле a1 шахматной доски. За ход разрешается сдвинуть ее на любое число клеток вправо или вверх. Выигрывает тот, кто поставит ладью на клетку h8. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 35676

Темы:   [ Математическая логика (прочее) ]
[ Неравенства. Метод интервалов ]
Сложность: 2+
Классы: 7,8,9

Пусть x - некоторое натуральное число. Среди утверждений: 2x больше 70;
x меньше 100;
3x больше 25;
x не меньше 10;
x больше 5;
три верных и два неверных. Чему равно x?
Прислать комментарий     Решение


Задача 115525

Темы:   [ Логика и теория множеств ]
[ Оценка + пример ]
Сложность: 2+
Классы: 7,8,9,10,11

В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .