Страница:
<< 157 158 159 160
161 162 163 >> [Всего задач: 1308]
|
|
Сложность: 4+ Классы: 8,9,10
|
Имеется несколько гирь, масса каждой из которых равна целому числу. Известно,
что их можно разбить на k равных по массе групп.
Доказать, что не менее чем k способами можно убрать одну гирю так, чтобы оставшиеся гири нельзя было разбить на k равных по массе групп.
|
|
Сложность: 4+ Классы: 10,11
|
Прибор для сравнения чисел logab и logcd (a, b, c, d > 1) работает по правилам: если b > a и d > c, то он переходит к сравнению чисел logab/a и logcd/c
если b < a и d < c, то он переходит к сравнению чисел logdc и logba; если (b − a)(d − c) ≤ 0, то он выдаёт ответ.
а) Покажите, как прибор сравнит числа log2575 и log65260.
б) Докажите, что любые два неравных логарифма он сравнит за конечное число
шагов.
|
|
Сложность: 4+ Классы: 9,10,11
|
В колоду сложено n различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все n карт в обратном порядке.
а) Докажите, что при n = 9 это можно сделать за 5 операций;
Докажите, что при n = 52 это
б) можно сделать за 27 операций;
в) нельзя сделать за 17 операций;
г) нельзя сделать за 26 операций.
|
|
Сложность: 4+ Классы: 8,9,10
|
В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.
|
|
Сложность: 4+ Классы: 9,10,11
|
Фигура Ф представляет собой пересечение n кругов (n ≥ 2, радиусы не обязательно одинаковы). Какое максимальное число криволинейных "сторон" может иметь фигура Ф? (Криволинейная сторона – это участок границы Ф, принадлежащий одной из окружностей и ограниченный точками пересечения с другими окружностями.)
Страница:
<< 157 158 159 160
161 162 163 >> [Всего задач: 1308]