ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 102973

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 5,6

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

Прислать комментарий     Решение

Задача 115970

Темы:   [ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее число, кратное 45, десятичная запись которого состоит только из единиц и нулей.

Прислать комментарий     Решение

Задача 103864

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 6,7,8

В книге рекордов Гиннесса написано, что наибольшее известное простое число равно  23021377 – 1.  Не опечатка ли это?

Прислать комментарий     Решение

Задача 64493

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости на 5 и 10 ]
Сложность: 3+
Классы: 9,10,11

Найдите все трёхзначные числа, квадраты которых оканчиваются на 1001.

Прислать комментарий     Решение

Задача 64430

Темы:   [ Процессы и операции ]
[ Перебор случаев ]
[ Инварианты ]
[ Признаки делимости на 5 и 10 ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

На экране компьютера – число 141. Каждую секунду компьютер перемножает все цифры числа на экране, полученное произведение либо прибавляет к этому числу, либо вычитает из него, а результат появляется на экране вместо исходного числа. Появится ли еще когда-нибудь на экране число 141?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .