ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 348]      



Задача 108834

Темы:   [ Куб ]
[ Свойства сечений ]
[ Площадь и объем (задачи на экстремум) ]
Сложность: 4
Классы: 8,9

В каком отношении делит объём куба плоскость, перпендикулярная его диагонали и делящая диагональ в отношении: а) 2:1; б) 3:1?
Прислать комментарий     Решение


Задача 109200

Темы:   [ Куб ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В куб ABCDA1B1C1D1 со стороной 1 вписана сфера. Точка F расположена на продолжении ребра BB1 за точку B1 , причём FB1 = . Из точки F проведена касательная к сфере, пересекающая грань CC1D1D куба в точке E , Причём EFB1 = arccos . Найдите EF .
Прислать комментарий     Решение


Задача 109295

Темы:   [ Куб ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 4
Классы: 10,11

Через центр единичного куба проведена плоскость, не проходящая через ребро куба и делящая куб на два многогранника. Докажите, что в каждом из получившихся многогранников найдётся диагональ, длина которой не меньше .
Прислать комментарий     Решение


Задача 109355

Темы:   [ Куб ]
[ Скрещивающиеся прямые и ГМТ ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 4
Классы: 10,11

Прямая l , параллельная диагонали AC1 единичного куба ABCDA1B1C1D1 , равноудалена от прямых BD , A1D1 и CB1 . Найдите расстояния от прямой l до этих прямых.
Прислать комментарий     Решение


Задача 110246

Темы:   [ Параллелепипеды (прочее) ]
[ Построения на проекционном чертеже ]
[ Построение сечений ]
Сложность: 4
Классы: 10,11

Точки M , N и K принадлежат соответственно рёбрам CD , AD и BB1 параллелепипеда ABCDA1B1C1D1 , причём CM:MD = 1:2 , AN = ND , BK:KB1 = 2:1 . Постройте сечение параллелепипеда плоскостью, проходящей через точки M , N , K . В каком отношении эта плоскость делит ребро AA1 и диагональ BD1 параллелепипеда?
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .