ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 348]      



Задача 87451

Темы:   [ Сфера, описанная около тетраэдра ]
[ Куб ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 . Точка M – середина ребра AB , K – середина ребра CD . Найдите радиус сферы, проходящей через точки M , K , A1 , C1 , если ребро куба равно .
Прислать комментарий     Решение


Задача 87590

Темы:   [ Перпендикулярные плоскости ]
[ Куб ]
Сложность: 3
Классы: 10,11

Обязательно ли будут параллельными две плоскости, перпендикулярные одной и той же плоскости?
Прислать комментарий     Решение


Задача 87612

Темы:   [ Ортогональная проекция (прочее) ]
[ Куб ]
Сложность: 3
Классы: 10,11

Нарисуйте изображение куба, полученное в результате ортогонального проектирования куба на плоскость, перпендикулярную: а) одному из рёбер; б) диагонали одной из граней.
Прислать комментарий     Решение


Задача 87633

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Куб ]
Сложность: 3
Классы: 10,11

Все плоские углы трёхгранного угла равны 90o . Найдите углы между биссектрисами плоских углов.
Прислать комментарий     Решение


Задача 98043

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10

Автор: Фомин С.В.

Дано 27 кубиков одинакового размера: 9 красных, 9 синих и 9 белых. Можно ли сложить из них куб таким образом, чтобы каждый столбик из трёх кубиков содержал кубики ровно двух цветов? (Рассматриваются столбики, параллельные всем ребрам куба, всего 27 столбиков.)

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .